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The problem considered is that of two-dimensional viscous flow in a straight channel. The 
decay of a stationary perturbation from the Poiseuille flow in both the upstream and 
downstream directions is sought. A differential eigenvalue equation resembling the Orr- 
Sommerfeld equation is solved using a spectral method for values of the Reynolds number R 
between 0 and 2000. Although the decay downstream has received considerable previous 
attention, the situation upstream has not been studied in detail. It is found that for R greater 
than about 250, the upstream disturbances decay more rapidly by an order of magnitude 
greater than the downstream disturbances. The eigenfunctions are used to obtain an 
asymptotic solution for two-dimensional channel flow both upstream and downstream and 
comparison is made with a previous numerical solution for flow in a channel with a step 
change in width. 

1. INTRODUCTION 

Incompressible viscous flow in a channel has been the subject of many 
computational studies. Various combinations of channel geometry can be considered, 
but most of the problems of this type assume Poiseuille flow far down a straight 
channel or pipe as either the entry flow or the exit flow or both. In the present work, 
attention is confined to the two-dimensional problem of flow in a straight channel; an 
asymptotic solution of the Navier-Stokes equations in a region where the flow is 
slightly perturbed from the Poiseuille flow is considered. The equations are linearised 
on the assumption of a small stationary disturbance from the parallel flow. This leads 
to a differential eigenvalue equation for the decay of a stationary perturbation very 
similar to the Orr-Sommerfeld equation. The problem of determining the asymptotic 
decay downstream has previously been attempted by, amongst others, Gillis and 
Brandt [4] and Wilson [ 121. The problem of entry flow to a channel under various 
entry conditions has been investigated by Van Dyke [9] and Wilson [ 131, although 
perturbations from Poiseuille flow upstream were not specifically considered. In cases 
where they are applicable, perturbations to the Poiseuille flow can be used as 
asymptotic boundary conditions for flow into or out of a channel, thus reducing the 
domain of computation and cutting down the computational time. 
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It is possible to solve the differential eigenvalue equation by two very different 
methods, namely, an initial-value type method or a spectral method. The dependent 
variable of the ordinary differential equation is expressed as an expansion of 
Chebyshev polynomials resulting in a generalised algebraic eigenvalue problem, 
which is solved by using the QR matrix eigenvalue algorithm. The method employed 
here is analogous to that used by Orszag [8] in his treatment of the Orr-Sommerfeld 
stability equation. 

An attempt is made to employ the eigensolutions to describe the asymptotic 
behaviour of the flow both upstream and downstream in a channel in a specific 
example. To this end we compare various asymptotic formulations derived from the 
theory with the data of Dennis and Smith [2] obtained in solving the problem of flow 
in a channel with a step. The agreement is excellent upstream but downstream it is 
more tentative. 

2. EQUATIONS 

Following Wilson [ 121, the nondimensional stream function I&, y) satisfies the 
equation 

(2-l) 

where x is the (dimensionless) downstream coordinate, y is the (dimensionless) 
transverse coordinate, and R = au/v is the Reynolds number, with a half the channel 
width and Uu the volumetric flow rate of the Poiseuille flow over half the channel 
width. If the quantities u and u are, respectively, the velocity components in the x and 
y directions, then they are related to I// by 

u = @lay, v = -al///ax. P-2) 

The origin is at the centre of the channel and the boundary conditions on the walls 
y = fl are 

y(x, *l) = +l, alypy = 0 when y=fl. (2.3) 

The velocity far upstream approaches the parabolic profile and so 

W’f(3Y -Y3h al///ax + 0 as x+fco. (2.4) 

We now look for a perturbation solution where 

v(x, v) = d(3~ - 9) + NY) exp(--arx), (2.5) 

where E is small. Substituting (2.5) in (2.1) and neglecting squares of e leads to 

4’” + 2~1~9” + a”4 + aR [{(l - y”)(#” + a’#) + 341 = 0, (2.6) 
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with boundary conditions 

$(*l)=~‘(*l)=O. (2.7) 

Wilson [ 121 pointed out that the above equation is similar to the Orr-Sommerfeld 
equation. The main difference is that in the present equation, 01 is an eigenvalue, not a 
prescribed wave number; the equation is nonlinear in (x, which in general will be 
complex. It is readily shown that, if (r is an eigenvalue, so is a* (the complex 
conjugate); the eigenfunction is 4 *. The complex eigenvalues are in conjugate pairs 
but for simplicity only one of the pair will be given in the numerical results, the one 
with positive imaginary part. We are interested only in decaying modes, since 
growing modes cannot satisfy the necessary conditions as x--, &co. The eigenvalues 
with positive real part have associated modes which decay as x+ +oo while those 
with negative real part are associated with modes which decay as x-t --oo. It will be 
shown later that the results in these two cases are very different. The reason for 
considering eigenvalues with both positive and negative real parts is that the physical 
problems, in which the eigenfunctions might be used as asymptotic solutions, could 
involve flow out of channel or entry into a channel. The eigenfunctions will either be 
odd or even functions of y and the terms odd and even will be applied to the eigen- 
values themselves. There is in fact an infinite sequence of eigenvalues here for each 
fixed R, which may be ordered by the magnitude of the real part. The proportion of 
real eigenvalues tends to increase with R. We only obtain a finite number of eigen- 
values because the Chebyshev series used to approximate the solutions is terminated 
after a finite number of terms. 

3. THE CHEBYSHEV SERIES EXPANSION 

Orszag [8], in his treatment of the Orr-Sommerfeld equation, discussed the 
advantages of Chebyshev polynomials relative to other sets of orthogonal 
polynomials. In particular, he showed that if the coefficients of a linear differential 
equation are infinitely differentiable, the approximation obtained is of infinite order in 
the sense that errors decrease more rapidly than any power of l/N as N-, co, where 
N is the number of Chebyshev polynomials used in the approximation. We therefore 
use Chebyshev polynomials to obtain a numerical solution of (2.6), subject to 
boundary conditions (2.7). The required properties of Chebyshev polynomials are 
outlined below and further details may be obtained from Orszag [8] or Fox and 
Parker 131. 

The function 4(y) and the polynomial coefficients of (2.6) are infinitely differen- 
tiable in the interval -1 < y Q +l. Let the Chebyshev expansion of 4(y) and its 
derivatives dq#/dyq be 

dq4(y)ldyq = f aPT,(y), 
“=lJ 

(3.1) 
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where a:' E a, and T,(y) is the nth degree polynomial of the first kind, defined by 

T,(cos 6) = cos ne, (3.2) 

for n = 0, 1, 2 ,... . The properties of T,(y) are now used to express a?' in terms of 
u'~-". Two constants c, and d, are commonly used in the recurrence relations of 
Chebyshev polynomials and are given as 

c, =d, = 0 for n < 0; c, = 2, do= 1, 

c,=d, = 1 for n > 0. 

It can be shown that 

c a@’ = 2 
n n f pay (n>O), (3.3) 

p=n+ I 
p+n-l(mod 2) 

where a z b(mod 2) means that a -b is divisible by 2. The second and fourth 
derivatives of ( are then given by 

cc 
c #’ - 

n n - ,=T+2 P(P2 -n')a, (n 2 0) (3.4) 
psn(mod 2) 

and 

24c,al;')= ,=t+. P(P2-~2)KP-~)2-4][(p+n)2-4]u, (n>O). (3.5) 
p=n(mod 2) 

The coefftcients of $ in (2.6) are constant except for the y2 term, on which we use the 
property 

4Y2Ts(Y)= 7,-2(Y)+ 2Ts(Y)+ 7,,+,(Y) 

to find that the n th Chebyshev coefficient of 4y29( y) is 

C n-2an-2 + Cc, + c,-‘1 a, f a,+, (n 2 0). (3.6) 

A similar result holds for 4y2$“(y) in terms of as' instead of a,. 
The above expansions are substituted into (2.6) and the coefficients of T,,(y) may 

be equated by virtue of the orthogonality properties of the Chebyshev polynomial. 
This yields 
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The coefficients with superscripts 2 or 4 may be expressed in terms of the basic coef- 
ficients by using (3.4) or (3.5). We shall now restrict the summation and truncate the 
Chebyshev series at TN(y). This gives 

m 
’ ,s+4 

P(P2 - O(P - 4’ - 41[(P + n)” - 41 up 
p=n(mod 2) 

+ ,=g+, {[2~r*+~a~(4--~--~~1)]~(~*-~*)-~~~cn~~~~-(~+2)~] 

p=n(mod 2) 

- &Rd,-,p[p* - (n - 2)*] I up - $uRn(n - 1) a, + {a” + ;Ra(a* - 2)] c,a, 

- ib3R[c,-2an-2 + c,(c, + c,-J u,, + c,u,+,] = o, (3-g) 

for 0 < n <N. If the expansion (3.1) and the properties 7’,(f 1) = (+ I)“, T;(k 1) = 
(k l)n-’ n2 are used on the boundary conditions #(* 1) = #‘(k 1) = 0, we obtain 

‘f. a, = 0, & (-1)” a, = 0, i0 n*u, = 0 and “iO (-l)“-’ n2c,, =O. 

These boundary conditions will be more useful later if we add and subtract them to 
get 

a, = 0, n2u,=0 
n=O n=O 

n=O(mod 2) n -O(mod 2) 

and 

a,=O, n*u, = 0. 
n=l n=l 

n=l(mod 2) n=l(mod 2) 

(3.9) 

(3.10) 

Equations (3.8)-(3.10) separate into two sets with no coupling between the odd 
subscript coefficients and the even subscript coefficients. To examine the even case, 
we replace N by 2M, n by 2m and u2,,, by a^,. There are M + 1 unknowns a^,, 
m = 0, 1, 2,..., M. If (3.8) were applied for n = 0,2,4,..., 2M together with the 
boundary conditions (3.9), we would have M + 3 equations with M + 1 unknowns 
with the only solution being the trivial one. Orszag [B] solved this over-specification 
by using Lanczos’ tau method first described in [5]. The effect of this is not to use 
(3.8) for m = M - 1 or M, and we thus have M + 1 equations with M + 1 unknowns. 
The odd solution is treated in a similar manner by restricting the number of equations 
used. 

Although there are two distinct cases which have been designated as odd and even, 
they are treated in a similar manner to each other in the remainder of the paper. The 
problem is to find all the eigenvalues a for a given Reynolds number R. This causes 



184 BRAMLEYANDDENNIS 

some difficulties because a occurs up to the power of four in (3.8). If we take a (real 
or complex) as a given parameter it is easier to treat R as the eigenvalue parameter 
and calculate all its values corresponding to this value of a because R appears 
linearly in (3.8). In Section 4 we describe this method of Frocedure and in Section 5 
the general one of obtaining a for a given R. 

4. THE INVERSE PROBLEM 

We first solve the eigenvalue problem by means of the inverse method, i.e., given a 
find all the eigenvalues R. This way the problem is much easier to solve and requires 
far less computer time. The results obtained are more useful than at first seems 
possible. We can use these results to check the results obtained by the method of 
Section 5 and to plot the eigenvalues R on a graph against a where it does not matter 
whether the results were obtained from the inverse problem or not. 

Equations (3.8) with M= 0, 1 ,..., M- 2 together with the boundary conditions 
(3.9) can be expressed in the form 

(A -U?)b=O, (4.1) 

where A, B are square matrices of dimension A4 + 1, A = aR, and b is the eigenvector. 
Equation (4.1) is a generalised eigenvalue problem. The matrix B has zeros in the last 
two rows from the boundary conditions, and rank B = rank A - 2. This means that 
two of the eigenvalues are infinite and are ignored. In all the cases done, the rank of 
B is not decreased any more than described above. The matrices A and B are 
predominantly upper triangular. 

The method used to solve (4.1) is described by Moler and Stewart [ 71 and is a 
generalisation of the standard QR algorithm. This routine is used as an ISML 
subroutine on a CYBER 73. It monitors the size of residuals, and in all cases the 
equations were well conditioned. 

5. CALCULATION OF ALL a FOR A GIVEN R 

It is desirable to be able to calculate all the eigenvalues (real and complex) for a 
particular Reynolds number. Equations (3.8) with M = 0, l,..., M - 2 together with 
the boundary conditions (3.9) can be expressed in the form 

(a4C4 + a3C3 + a%, + aC, + C,)b = 0, (5.1) 

where Ci (i = 0, 1, 2, 3,4) are square matrices of order M + 1. This can be 
transformed to the generalised eigenvalue problem 

(E - af’) x = 0, (5.2) 
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where 

- 

and xT = (a3bT, a*b*, abT, bT). There are two main differences from results in the 
previous section: E, F are square matrices of order 4M + 4, and all but the top 
quarters of E and F are sparse. An attempt was made to solve the generalised eigen- 
value problem (5.2) by the method of Moler and Stewart [7], as used in the previous 
section. With the increased matrices, rank F = rank E - 8, and there are now eight 
infinite eigenvalues which have to be ignored. There is also a large increase of 
computation time from the previous method, but a far more serious matter is that the 
residues become large for some of the eigenvalues with a serious loss of accuracy. By 
simple column operations it is now possible to reduce the size of matrices E and F to 
4M- 4, thus making the rank of E equal to the rank of F and eliminating the eight 
infinite eigenvalues. This reduced problem can now be solved using the method of 
Moler and Stewart [7], and the residues are small. 

The revised matrix F is now nonsingular, upper triangular, and sparse. With the 
matrix E also having a large proportion of zero elements, the computation time can 
be reduced by solving the eigenvalue problem 

(F-'E--1)x = 0. (5.3) 

The structures of the reduced matrices E and F are given in Figs. 1 and 2 for M = 7. 

xx xxxxx~xxxxxxIxxxxxx 
xxx xxxx xxxxxxxxxxx 

xxx x x XI xxxx(xxxxxx 
xxx xx xxxxxxxxx 

x x XI XI XXIXXXXXX 
xxxxxxx -- xx- _ _ 

1 r--r--- 

FIG. 1. Structure of matrix E after application of six column operations to make rank F = rank E. 
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FIG. 2. Structure of matrix F after application of 16 column operations to make rank F = rank E. 

The structures remain similar for M larger, the unit diagonals are shown, x denotes 
any real number, and all the rest of the elements are zero. The product F-‘E is 
formed by simple row operations on E and F. The eigenvalue problem given by (5.3) 
is now solved using the QR algorithm of Wilkinson [lo]. The size of the elements of 
the matrix Fp’E can have a wide range, so the matrix F-‘E is balanced using the 
method of Wilkinson and Reinsch [ 1 I] before using the QR algorithm. This is one 
more advantage of reducing the problem to find the eigenvalue of a single matrix. 

6. NUMERICAL RESULTS 

A large volume of numerical data is generated and we try to present the main 
results in as concise a way as possible. The results for real a are presented in 
graphical form for R < 1000. The majority of these results are obtained by solving 
the inverse problem as stated in Section 4. The value of M was varied, and M = 16 
gave sufficiently accurate results. Random checks are made by using the full method 
of Section 5, and both sets of results were entirely in agreement with each other. 
Figures 3 and 4, respectively, give the first six positive odd and even eigenvalues. It 
will be seen that in both cases there are values of R below which there are no positive 
real eigenvalues. Gillis and Brandt [4] called the value of R below which there was 
no real positive eigenvalue Rcrit. These authors only obtained one eigenvalue for the 
odd case, and that would correspond to the lowest curve of Fig. 3. The results of 
Gillis and Brandt agree with this curve with one notable exception: they calculated 
Rcri, = 8.461 at Q = 2.632, whereas Fig. 3 suggests that Rcri, = 6.3 at a = 6.0. For 
R = 6.0, the full problem solution gives eigenvalues a = 8.39, 9.63, and 10.94, which 
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FIG. 3. Graph of positive real odd eigenvalues against Reynolds number. 
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FIG. 4. Graph of positive real even eigenvalues against Reynolds number. 
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are all out of range of Fig. 3. It is easy to see why Gillis and Brandt derived the 
wrong value; they found a relative minimum but not the smallest relative minimum. 
The value Rcrit is not really important, but taking into account both odd and even 
eigenvalues, there are no real positive eigenvalues for R Q 5.0. In Figs. 3 and 4, 
undulations will be noticed as a increases. These undulations have been cross- 
checked using both .methods. The undulations mean that the number of real eigen- 
values does not decline monotonically as we reduce R. In the even eigenvalue case, 
when R = 10 we only have one positive eigenvalue a = 2.6737, whereas when R = 7 
we have eigenvalues a = 3.9525, 4.5121, 6.0627, etc. In Figs. 3 and 4, it is impossible 
to suggest an asymptote as a becomes large, but the values of R at a = 7.0 are very 
similar in the two cases. 

As suggested in Section 2, we are also interested in the negative real eigenvalues 
which are given in Figs. 5 and 6 for the odd and even cases, respectively. In these 
cases as well, the curves are not always monotonically decreasing. There are values 
of R for which there are negative real eigenvalues but no positive ones. Note that the 
negative eigenvalues vary only slightly for R greater than 50, in marked contrast to 
the positive eigenvalues. We shall return to this point later. In Figs. 3-6, the curves at 
the right-hand side of the graphs are not tending to an asymptote. If the inverse 
problem is solved for a of larger modulus than in these figures, the values of R 
obtained do increase after a while. These results are not presented because our main 
interest is in eigenvalues whose real part has the smallest modulus. 

Tables I and II give the complex eigenvalues with positive real part and 
0 < R < 100 for odd and even eigenfunctions, respectively. The complex eigenvalues 

FIG. 5. Graph of negative real odd eigenvalues against Reynolds number. 
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25 

2.5 

1.0 

FIG. 6. Graph of negative real eigenvalues against Reynolds number. 

occur in complex conjugate pairs but, as stated previously, only the one with positive 
imaginary part is given. A maximum of three odd and three even eigenvalues are 
given. Difficulty was encountered with the accuracy of the complex eigenvalues for R 
greater than 10. It was decided that it was not worthwhile increasing the number of 
Chebyshev polynomials in order to try to obtain these eigenvalues to greater 
accuracy. Tables III and IV give the complex eigenvalues with negative real part and 
0 < R < 10 for odd and even eigenfunctions, respectively. The real negative parts of 
these eigenvalues become larger in modulus and thus the associated disturbance will 

TABLE I 

Complex Odd Eigenvalues with Positive Real Part for 0 <R < 100 

R Eigenvalues 

0 3.74884 + 1.38434i 
0.25 3.67669 + 1.391411 
0.5 3.60752 + 1.39392i 
1.0 3.47788 + 1.387083 
2.5 3.15444 + 1.2966Oi 
5.0 2.80083 + 1.00736i 

10.0 3.37037 + 0.51693i 
25.0 2.66742 + 0.257191 
50.0 2.6942 + 0.21561 

100.0 2.8245 + 0.4041i 

6.94998 + 1.6761 li 10.11926 + 1.85838i 
6.88416 + 1.67614i 10.05522 + 1.85719i 
6.81987 + I.672241 9.99225 + 1.85216i 
6.69588 f 1.653621 9.86952 f 1.83117i 
6.36092 + 1.52056i 9.52773 + 1.6836Oi 
5.93589 + 1.008261 9.067381 + 1.015521 
6.53508 + 1.08843i 
6.2473 + 0.8581i 
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TABLE II 

Complex Even Eigenvalues with Positive Real Part for 0 <R < 100 

R Eigenvalues 

0 2.10620 + 1.12537i 
0.25 2.02356 + 1.15434i 
0.5 1.94628 + 1.17428i 
1.0 1.80723 + 1.19347i 
2.5 1.49815 + 1.158481 
5.0 1.22061 + 1.01508i 

10.0 1.01976 t 0.77058i 
25.0 1.0416 t 0.60931 
50.0 0.8780 t 0.5191i 

100.0 0.8178 $0.45771 

5.35627 $ 1.55157i 
5.28839 + 1.55345i 
5.22251 + I.551261 
5.09672 + 1.53598i 
4.76630 + 1.417711 
4.36877 + 1.005341 
4.97905 + 0.90975i 
4.78856 tO.72461i 
4.5279 + 0.59661 
4.5752 tO.4633i 

8.53668 $ 1.775541 
8.47198 t I.774761 
8.40853 f 1.7701 li 
8.28540 f 1.74994i 
7.94678 t l.60814i 
7.50198 + 1.0123Oi 
8.08350 t 1.20716i 
7.7089 + 0.8531i 

TABLE III 

Complex Odd Eigenvalues with Negative Real Part for 0 <R < 10 

R Eigenvalues 

0.25 -3.82402 + 1.372141 -7.01732 + 1.67184i -10.18436 + 1.85554i 
0.5 -3.90229 f 1.354141 -7.08617 + 1.66298i -10.25051 f 1.8484Oi 
1.0 -4.06847 t 1.2974Oi -7.22828 f 1.629441 -10.38594 t 1.81985i 
2.5 -4.66051 + 0.81952i -7.68379 + I.325501 -10.81542 t 1.56878i 
5.0 -7.26515 t 1.25674i -10.23210 t 1.24138i -13.25578 t 1.26825i 

10.0 -10.45868 t 1.694821 -13.89801 + 1.343741 -16.74203 + 1.38643i 

TABLE IV 

Complex Even Eigenvalues with Negative Real Part for 0 (R < 10 

R Eigenvalues 

0.25 -2.194271 t 1.085 19i -5.42613 t 1.54525i -8.60263 + 1.77221i 
0.5 -2.28784 t 1.030931 -5.49796 + 1.53398i -8.66982 t 1.76447i 
1.0 -2.49155 t 0.86105i -5.64733 + 1.49407i -8.80784 + 1.7341Oi 
2.5 -6.11865 + 1.12698i -9.24808 + 1.46334i -12.38445 t 1.65452i 
5.0 -6.40282 + 0.728261 -8.77209 + 1.15148i -11.73277 + 1.258371 

10.0 -10.15863 f 1.20719i -15.23126 + 1.17982i -18.19762 + 1.39851i 
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TABLE V 

Eigenvalues for R = 100 

Odd/Even Eigenvalue a 

Number Number 
of zeros of zeros 

in velocity Odd/Even Eigenvalue a in velocity 

Real positive 
E 
0 
E 
0 
0 
E 
0 
E 
E 
0 

0.14540 1 
0.18808 2 
0.52747 3 
0.57534 4 
1.17751 6 
1.40059 7 
2.03429 6 
2.36435 9 
3.53450 7 
3.97201 8 

Real negative 
E 
0 
E 
0 
E 
0 

Complex 
E 
0 

-0.97667 1 
-2.99921 2 
-4.77226 3 
-6.48382 4 
-8.16908 5 
-9.84084 6 

0.81781 +0.45772i 
2.82446 + 0.404 12i 

decay more quickly; for this reason the complex eigenvalues with negative real part 
are not tabulated for R greater than 10. 

For R = 100, 250, 500, 1000, and 2000, the eigenvalues are given in Tables V-IX, 
respectively. As will be seen from Figs. 3-6, there will be at least five odd and five 
even eigenvalues which are real and positive and at least three odd and three even 
eigenvalues which are real and negative. Even though as R is increased, the number 
of real eigenvalues increases, only ten positive and six negative eigenvalues are given 
because the disturbances associated with the extra eigenvalues decay more quickly 
than those listed. Only one or two complex eigenvalues are given in each case. 

TABLE VI 

Eigenvalues for R = 250 

Odd/Even Eigenvalue a Odd/Even Eigenvalue a 

Real positive 
E 
0 
E 
0 
E 
0 
0 
E 
0 
E 

0.05787 
0.07525 
0.19745 
0.23009 
0.43773 
0.46933 
0.79389 
0.85178 
1.20545 
1.36827 

Real negative 
E 
0 
E 
0 
E 
0 

Complex 
E 

-0.84183 
-2.89221 
-4.65001 
-6.34217 
-8.00625 
-9.655 19 

0.72120 + 0.379291 
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TABLE VII 

Eigenvalues for R = 500 

Odd/Even Eigenvalue a Odd/Even Eigenvalue a 

Real positive 
E 
0 
E 
0 
E 
0 
E 
0 
0 
E 

0.028913 
0.037627 
0.097983 
0.11505 
0.21101 
0.23460 
0.37383 
0.39657 
0.60114 
0.60642 

Real negative 
E 
0 
E 
0 
E 
0 

Complex 
E 

-0.75548 
-2.83090 
-4.58128 
-6.26383 
-7.91770 
-9.55615 

0.65637 + 0.336421 

The number of odd or even Chebyshev polynomials M used is either 20 or 24 for 
most of the Reynolds numbers, with M= 16 for the small Reynolds numbers. As 
mentioned above, difficulty is experienced with the accuracy of the complex eigen- 
values for the larger Reynolds numbers. With M = 24, the computer programme is 
required to find the eigenvalues of a square matrix of order 100. Increasing M should 
give a more accurate answer, but at this stage increasing M does not increase the 
accuracy of the answer. In the calculation the eigenvalues with smallest modulus tend 
to be more accurate. As R increases, the modulus of the complex eigenvalues 
increases relative to the modulus of the real eigenvalues. As a result, the complex 
eigenvalues will be less accurate because the real eigenvalues with smaller modulus 
will have taken precedence. The inverse method is used to calculate the last decimal 
place of the real positive eigenvalues for R = 2000. The real negative eigenvalues are 

TABLE VIII 

Eigenvalues for R = 1000 

Odd/Even Eigenvalue a Odd/Even Eigenvalue a 

Real positive 
E 
0 
E 
0 
E 
0 
E 
0 
E 
0 

0.01445 
0.01881 
0.04890 
0.05752 
0.10469 
0.11729 
0.18249 
0.19825 
0.28384 
0.30044 

Real negative 
E 
0 
E 
0 
E 
0 

Complex 
E 0 

-0.67978 
-2.78220 
-4.52729 
-6.20280 
-7.84929 
-9.48026 

,596s + 0.2995i 
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TABLE IX 

Eigenvalues for R = 2000 

Odd/Even Eigenvalue a Odd/Even Eigenvalue a 

Real positive 
E 
0 
E 
0 
E 
0 
E 
0 
E 
0 

0.001221 
0.009408 
0.02444 
0.02876 
0.05225 
0.05865 
0.09077 
0.09912 
0.14018 
0.15021 

Real negative 
E 
0 
E 
0 
E 
0 

Complex 
E 

-0.6129 
-2.1434 
-4.4846 
-6.1549 
-1.1958 
-9.4212 

0.5419 + 0.268Oi 

only given to four decimal places; the full problem results are doubtful in the fifth 
decimal place and the inverse problem was unable to do better than this. Here the 
reason for the inverse problem not being able to give the fifth decimal place is that 
the gradient of the curves in Figs. 5 and 6 is nearly vertical for large R. 

The main disadvantage of the method we have used is that, particularly for the 
larger Reynolds numbers, spurious eigenvalues are calculated by the programme. 
When the number of Chebyshev polynomials is changed by 4, say, this spurious 
eigenvalue either changes wildly or disappears‘altogether. It is difticult to compare 
the results obtained for the same R but different A4 because the eigenvalues are 
calculated in a different order. Barratt and Sloan [l] used the above method and 
obtained one spurious eigenvalue per calculation. In our calculations there is never 
more than one spurious eigenvalue but its position can vary wildly. No attempt has 
been made to explain this phenomenon, but care must be taken to check the eigen- 
values with a different value of M or check using a different method. 

Wilson [ 121 did not present nearly as many results as are presented in this paper. 
In general, where the present paper and Wilson calculate comparable real eigen- 
values, the two papers are in agreement. In the case of complex eigenvalues, the 
above results only agree with Wilson for R = 0. To be more specific, the results of the 
present paper agree with Table I (R = 0) and Table III and disagree with Tables I 
(R # 0), II, and IV, where the table numbers are those of Wilson [ 121. Wilson uses a 
completely different method to solve the differential eigenvalue problems, and reasons 
for the disagreement cannot be given without reproducing that work. 

7. COMPARISONS WITH NUMERICAL DATA 

Dennis and Smith [2] obtained numerical solutions of the Navier-Stokes equations 
in the form (2.1) over a wide range of R for the case of flow along a two-dimensional 
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channel with a symmetrically placed constriction created by a sudden decrease in 
width. Equation (2.1) was written as two simultaneous equations by introducing the 
vorticity [ defined by the equation 

v2y/=-<, (7.1) 

and the two equations were solved numerically for w and 4 over the region of half the 
channel shown in Fig. 7. A steady Poiseuille velocity distribution was applied as a 
boundary condition both upstream and downstream, the upstream condition being 

w -;y--fy3, r-3y as x-i-co, (7.2) 

and that downstream 

v - 3Y - 4Y3, b 24~ as x-+co. (7.3) 

The channel walls were located at y = f 1 upstream and y = ff downstream, with 
x = 0 situated at the step discontinuity in width. In this problem, the flow is 
symmetrical about the centre line y = 0 and both w and c are therefore odd functions 
of y; thus only odd eigenfunctions will appear in the asymptotic expansions valid for 
large 1x1. 

For large enough distances upstream, the stream function w can be approximated 
by 

W4Y4Y3 + ‘f f,(y)P-S, (7.4) 
n=1 

where (I,, are the appropriate eigenvalues defined earlier and f,( y) are the associated 
eigenfunctions. The appropriate eigenvalues are those which are real and negative or 
complex with negative real parts, since these give the correct decay of I,U to the 
Poiseuille flow as x + -co. For the purpose of the subsequent discussion, we shall 
assume that complex terms have been omitted for the following reason: Comparisons 
between the numerical and theoretical results are made upstream for R > 10. For R 
as large as this, the asymptotic expansion is dominated by terms involving a, which 

Y’I 
I 

I 

ti= %y- Yzy3 I 

t= 3y 
, 
I 

y= % 

I 
I 

I Dwect~on t I 
/ 3=3y-4y3 

I of flow I 1=24y 
-L----Ce”eLEe- ----I-- __ __ 
upstream y=o Downstream 

Test Posha Test Position 

FIG. 7. Computational domain for Dennis and Smith [ 2 1. 
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are real. Therefore, there is no point in complicating the situation by introducing 
terms with complex a,, since in all events we only require the first few terms. In the 
downstream direction, w can be approximated as x + co by 

w - 3y - 4y3 + 2 f,*(y) e-+, 
II=1 

(7.5) 

where the a,* are assumed to consist of only positive real eigenvalues withf,*(y) the 
associated real eigenfunctions. Again the complex terms are omitted since 
comparisons downstream are made only for R = 500, for which the leading terms in 
(7.5) all have real positive a,*. 

Far enough upstream, the summation in (7.4) will be dominated by the term 
associated with the smallest real negative eigenvalue, which is assumed to be a,, and 
we easily deduce from (7.4) that 

aw 
ax”“’ 2 ( 

31-;y3--w 

1 as x-+-co. 

The comparable result downstream is 

$ - ap(3y - 4y3 - ty) as x-+co, 

(7.6) 

(7.7) 

where in this case a: is the smallest positive real eigenvalue. 
Equation (7.6) may be used in conjuction with the numerical solutions of Dennis 

and Smith [2] to obtain estimates of a, from the flow upstream of the step and 
Eq. (7.7) may similarly be used to estimate a: from the flow downstream. Obviously, 
neither (7.6) nor (7.7) will give good approximations in the vicinity of the step. 
Moreover, they could not be applied near the upstream and downstream boundaries, 
respectively, used by Dennis and Smith in their numerical solutions since the 
Poiseuille velocity distribution was used as a boundary condition at these boundaries. 
For these reasons, stations were chosen to test the results (7.6) and (7.7) which were 
midway between the step and the respective upstream and downstream boundaries 
imposed in the numerical solutions; these are labelled the upstream and downstream 
test positions in Fig. 7. The comparisons of the present paper have been made with 
the numerical solutions of Dennis and Smith obtained using a grid size of h = & for 
R = 10 and h = & for R > 10, and with the upstream and downstream boundaries at 
x = -2 and x = 2. Thus the test positions are at x = -1 and x = 1, respectively. 

Comparisons between the numerical results and the asymptotic results (7.6) can be 
made by estimating a, at given grid points from (7.6) using the numerical data for t,u 
and its derivative with respect to x. The results may then be compared with the 
calculated eigenvalue ai. At the upstream test station an estimate of a, can be 
obtained for every grid point across the width of the channel. These estimates are 
then averaged to give a result which can be compared with the theoretical value of a, 
calculated in the present paper. This comparison is given in Table X. It indicates 

581/47/2-3 



196 BRAMLEY AND DENNIS 

TABLE X 

Comparison Between the Present Calculation of the Theoretical Value of the Real Negative Eigenvalue 
with Smallest Modulus and the Estimate Obtained from the Numerical Solutions of Dennis and Smith 

PI 

R 10 50 100 500 1000 2ooo 
Theoretical a, -3.528 -3.107 -2.999 -2.83 1 -2.782 -2.743 
Estimated a, -3.526 -3.097 -2.984 -2.803 -2.737 -2.625 

without doubt that the limiting flow upstream in this numerical example is described 
by the leading term of the theoretical asymptotic expansion associated with the 
negative eigenvalue ai of smallest magnitude. Similar results were obtained by 
making comparisons at stations situated quite a considerable distance either side of 
the upstream test station. 

It is not possible to obtain a similar comparison between the present theory and the 
numerical results at the downstream test station for the smallest real positive eigen- 
value. The main reason is that the real positive eigenvalues are much smaller and 
closer together and the smallest eigenvalue does not dominate downstream as the 
negative one of smallest modulus does upstream. It is of interest to note that Dennis 
and Smith [2] found in obtaining numerical solutions that, whereas it was relatively 
easy to resolve the situation of the flow upstream, the downstream calculations were 
much more difftcult to resolve. There is a comparability of the situation in the present 
study; it is quite difficult to obtain an adequate check on the asymptotic nature of the 
flow downstream using the numerical data. 

8. SUMMARY AND DISCUSSION 

In this paper the eigenvalues giving the perturbation from Poiseuille flow in a 
channel are calculated for a range of Reynolds numbers. The eigenvalues with 
positive real parts are associated with downstream disturbances (X -+ a~), while those 
with negative real parts are associated with upstream disturbances (x-1 -co). The 
disturbances associated with the complex eigenvalues will be of an oscillatory nature, 
but in all cases it is the real part of the eigenvalue which is the factor that decides the 
rate of decay of the associated disturbances. There is little to be said about the rate of 
decay of the disturbances for small Reynolds numbers, but for larger values of R, the 
eigenvalues can be used to estimate the asymptotic departures from the parabolic 
profile. In general the eigenvalues associated with the upstream disturbances are an 
order of magnitude greater than the eigenvalues associated with the downstream 
disturbances. This implies that the upstream flow tends to the parabolic profile 
quicker than the downstream flow. 

It may be possible to use the eigenvalues in the asymptotic boundary conditions 
for the numerical solution of flow in channels where the Poiseuille flow is assumed at 
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a large distance upstream or downstream, or both. In the upstream direction, the 
expansion can be taken in the form of Eq. (7.4) and in the downstream direction in 
the form of (7.5). The asymptotic conditions (7.6) and (7.7) can be deduced from 
these expansions, respectively, and it is these conditions which may be suitable for 
use as boundary conditions in numerical work. These equations have in fact been 
used to test the results of the present paper using the numerical solutions of Dennis 
and Smith [2]. The check is excellent upstream but unsatisfactory downstream. It is 
hoped to use the theoretical results of the present paper to develop boundary 
conditions suitable for use both upstream and downstream in future numerical work. 

In checking the present results using the numerical solutions, we have utilized the 
fact that the eigenvalues which dominate the flow both upstream and downstream are 
real. The asymptotic formulation will be more complicated to use with oscillatory 
disturbances, but equally possible. For R > 100, upstream oscillatory disturbances 
are negligible and the upstream disturbances decay rapidly. For the downstream 
disturbances it is not until R > 250 that the oscillatory disturbances can be neglected. 

This paper presents the eigenvalues of Eq. (2.6) subject to (2.7). The calculations 
are performed either from the full problem of determining the eigenvalues 
corresponding to a specified R or the inverse problem. Selected eigenfunctions have 
been calculated using the inverse problem rather than the full problem to save 
computer time. Some of the eigenvalue calculations agree with previous authors and 
some disagree. The real positive eigenvalues for large R tend to agree with the 
asymptotic form derived by Wilson [ 121 while the complex eigenvalues do not agree 
with his asymptotic form. One of the main contributions of the present paper is to 
study in detail the eigensolutions dominating the flow at large distances upstream 
with the associated more rapid decay rate. 
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